36 research outputs found

    Cross-layer design for single-cell OFDMA systems with heterogeneous QoS and partial CSIT

    Get PDF
    Abstract— This paper proposes a novel cross-layer scheduling scheme for a single-cell orthogonal frequency division multiple access (OFDMA) wireless system with partial channel state information (CSI) at transmitter (CSIT) and heterogeneous user delay requirements. Previous research efforts on OFDMA resource allocation are typically based on the availability of perfect CSI or imperfect CSI but with small error variance. Either case consists to typify a non tangible system as the potential facts of channel feedback delay or large channel estimation errors have not been considered. Thus, to attain a more realistic resolution our cross-layer design determines optimal subcarrier and power allocation policies based on partial CSIT and individual user’s quality of service (QoS) requirements. The simulation results show that the proposed cross-layer scheduler can maximize the system’s throughput and at the same time satisfy heterogeneous delay requirements of various users with significant low power consumption

    A selective delayed channel access (SDCA) for the high-throughput IEEE 802.11n

    Get PDF
    Abstract— In this paper we investigate the potential benefits of a selective delayed channel access algorithm (SDCA) for the future IEEE 802.11n based high-throughput networks. The proposed solution aims to resolve the poor channel utilization and the low efficiency that EDCA’s high priority stations adhere due to shorter waiting times and consequently to the network’s degrading overall end performance. The algorithm functions at the MAC level where it delays the packets from being transmitted by postponing the channel access request, based on their traffic characteristics. As a result, the flow’s average aggregate size increases and consequently so is the channel efficiency. However, in some situations we notice that further deferring has a negative impact with TCP applications, thus we further introduce a traffic awareness feature that allows the algorithm to distinguish which flows are using the TCP protocol and override any additional MAC delay. We validate through various simulations that SDCA improves throughput significantly and maximizes channel utilization

    Adaptive delayed channel access for IEEE 802.11n WLANs

    Get PDF
    Abstract— In this paper we investigate potential benefits that an adaptive delayed channel access algorithm can attain for the next-generation wireless LANs, the IEEE 802.11n. We show that the performance of frame aggregation introduced by the 802.11n adheres due to the priority mechanism of the legacy 802.11e EDCA scheduler, resulting in a poor overall performance. Because high priority flows have low channel utilization, the low priority flows throughputs can be amerced further. By introducing an additional delay at the MAC layer, before the channel access scheduling, it will retain aggregate sizes at higher numbers and consequently a better channel utilization. Also, in order to support both UDP and TCP transport layer protocols, the algorithm’s operational conditions are kept adaptive. The simulation results demonstrate that our proposed adaptive delayed channel access outperforms significantly the current 802.11n specification and non-adaptive delayed channel access

    IEEE 802.11n MAC frame aggregation mechanisms for next-generation high-throughput WLANs [Medium access control protocols for wireless LANs]

    Get PDF
    IEEE 802.11n is an ongoing next-generation wireless LAN standard that supports a very highspeed connection with more than 100 Mb/s data throughput measured at the medium access control layer. This article investigates the key MAC enhancements that help 802.11n achieve high throughput and high efficiency. A detailed description is given for various frame aggregation mechanisms proposed in the latest 802.11n draft standard. Our simulation results confirm that A-MSDU, A-MPDU, and a combination of these methods improve extensively the channel efficiency and data throughput. We analyze the performance of each frame aggregation scheme in distinct scenarios, and we conclude that overall, the two-level aggregation is the most efficacious

    A teaching-learning sequence about weather map reading

    No full text
    In this paper a teaching-learning sequence (TLS) introducing pre-service elementary teachers (PET) to weather map reading, with emphasis on wind assignment, is presented. The TLS includes activities about recognition of wind symbols, assignment of wind direction and wind speed on a weather map and identification of wind characteristics in a weather forecast. Sixty PET capabilities and difficulties in understanding weather maps were investigated, using inquiry-based learning activities. The results show that most PET became more capable of reading weather maps and assigning wind direction and speed on them. Our results also show that PET could be guided to understand meteorology concepts useful in everyday life and in teaching their future students. © 2017 IOP Publishing Ltd

    Teaching Air Pollution in an Authentic Context

    No full text
    This paper describes a teaching-learning sequence (TLS) about air pollution and the findings resulting from its implementation by pre-service elementary teachers (PET) currently undergraduate students of the Department of Primary Education in the National and Kapodistrian University of Athens, Greece. The TLS focused on the relation of air pollution with wind and topography in local conditions. An authentic context was provided to the students based on daily up-to-date meteorological data via the Internet in order to estimate air pollution. The results are encouraging given that PET can correlate wind and concentration of air pollutants through reading specialized angular diagrams and weather maps, can recognize the correlation of topography in the concentration of air pollutants, and can describe temperature inversion. However, the PET demonstrated clear difficulties in ability of orientation, in wind naming, and in interpretation of symbols on weather map. Finally, the implications on teaching air pollution are discussed. © 2016, Springer Science+Business Media New York

    Preservice Elementary Teachers’ Study Concerning Wind on Weather Maps

    No full text
    In this article, we present the results of an implementation of a teaching–learning sequence that offered the opportunity to increase preservice elementary teachers’ engagement with authentic activities in meteorology. In particular, we describe the results of a teaching–learning sequence with regard to the representation of winds on weather maps implemented by preservice elementary teachers using collaborative and technologically supported inquiry-based learning activities. Data for this study were collected from classroom observations, pre- and posttest questionnaires, worksheets, and audiotapes of semistructured interviews. The results showed that preservice elementary teachers improved in their ability to recognize specific symbols of wind, to assign wind direction and wind speed on weather maps, to interpret the closeness of isobars, and to implement the clockwise rule in order to assign wind direction around a barometric pressure system. However, the preservice elementary teachers had difficulties transferring knowledge gained in practical situations because of problems applying the wind-naming rule, poor sense of direction, and a lack of familiarization with the Beaufort scale. Implications for teaching the representation of winds on weather maps are discussed. © 2018 Association for Science Teacher Education
    corecore